Serial No.: Not Yet Assigned

Filed : Herewith Page : 3 of 9

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) <u>An inductive electric energy transmission</u> circuit <u>comprising: arrangement for the inductive transmission of electric energy, with</u>

an oscillating circuit; (Lpr, Cpr),

a push-pull circuit <u>comprising with complimentary switching transistors (T2, T4) first</u>
and second switching transistors configured to alternate a flow of current throughthat are adapted to excite the oscillating circuit[[,]];

a control circuit <u>comprising</u> for the complimentary switching transistors that contains control transistors (T1, T3), first and second control transistors configured to control the first and second switching transistors; and

- a frequency generator (F), the configured to generate an output signal adapted to drive of which can be fed to the control transistors.
- 2. (Currently Amended) The <u>inductive electric energy transmission</u> circuit arrangement-according to <u>Cclaim 1</u>, <u>characterized in that wherein</u> the oscillating circuit (<u>Lpr, Cpr)</u> is <u>approximately tunedconfigured</u> to <u>oscillate at an oscillatory frequency substantially equal to a the frequency of the <u>output signal of the frequency generator</u> (<u>F</u>).</u>
- 3. (Currently Amended) The <u>inductive electric energy transmission</u> circuit arrangement-according to <u>Cclaim 1-or 2</u>, <u>characterized in thatwherein</u> the output signal of the frequency generator (F) is a square-wave signal.

Serial No.: Not Yet Assigned

Filed : Herewith Page : 4 of 9

4. (Currently Amended) The <u>inductive electric energy transmission</u> circuit arrangement according to <u>one of the preceding claims claim 1</u>, <u>characterized in that the output signal of the frequency generator (F) can be fed to the wherein a control terminal[[s]] of the <u>first</u> control transistors (T1, T3) and a control terminal of the second control transistor are configured to receive the output signal from the frequency generator.</u>

- 5. (Currently Amended) The <u>inductive electric energy transmission</u> circuit arrangement according to Cclaim 4, characterized in that the wherein a control terminal[[s]] of the <u>first</u> switching transistors (T2, T4) is electrically connected to a first end of a resistor, and wherein a control terminal of the second switching transistor is electrically connected to a second end of the are connected by means of a resistor-(R1).
- 6. (Currently Amended) The <u>inductive electric energy transmission</u> circuit arrangement according to <u>one of the preceding claimsclaim 1</u>, <u>further comprising:</u>

characterized in that a first capacitor (C1) is arranged electrically parallel to the a main current path of the first control transistor (T1), wherein a first end of the first capacitor is electrically connected to a first end of a resistor; and

in that a second capacitor (C2) is arranged electrically parallel to the a main current path of the second control transistor (T3), in that the first capacitor (C1) is connected to the first end of the resistor (R1), and in that wherein a first end of the second capacitor (C2) is electrically connected to the second end of the resistor (R1).

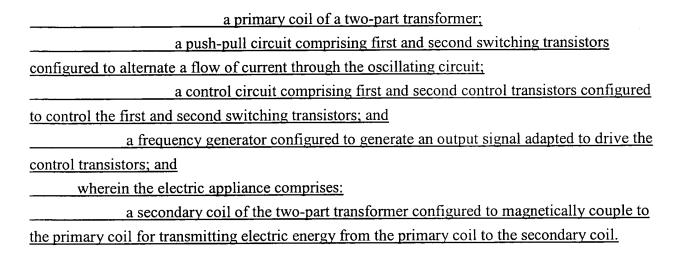
- 7. (Canceled)
- 8. (Currently Amended) The <u>inductive electric energy transmission</u> circuit arrangement according to <u>Claim claim 6 or 7</u>, <u>characterized in that wherein the first capacitor</u>, (C1) and the resistor, (R1) and the second capacitor (C2) are connected in <u>form a series connection</u>,

Serial No.: Not Yet Assigned

Filed : Herewith Page : 5 of 9

the circuit further comprising and a supply voltage source (U1) lies connected in parallel thereto with the series connection.

- 9. (New) The inductive electric energy transmission circuit according to claim 1, wherein a main current path of the first switching transistor and a main current path of the second switching transistor are arranged in a series connection, and wherein a supply voltage source is connected in parallel to the series connection.
- 10. (New) The inductive electric energy transmission circuit according to claim 1, wherein the oscillating circuit comprises an inductive coil.
- 11. (New) The inductive electric energy transmission circuit according to claim 10, wherein the inductive coil is a primary coil of a transformer, and wherein the primary coil is configured to supply electric energy to a secondary coil of the transformer.
- 12. (New) The inductive electric energy transmission circuit according to claim 1, wherein one of the first control transistor and the second control transistor is an n-channel field effect transistor, and wherein the other one of the first control transistor and the second control transistor is a p-channel field effect transistor.
- 13. (New) The inductive electric energy transmission circuit according to claim 1, wherein one of the first switching transistor and the second switching transistor is an n-channel field effect transistor, and wherein the other one of the first switching transistor and the second switching transistor is a p-channel field effect transistor.
- 14. (New) The inductive electric energy transmission circuit according to claim 1, wherein the first control transistor and the second control transistor comprise bipolar transistors having opposite polarity.
- 15. (New) The inductive electric energy transmission circuit according to claim 1, wherein the first switching transistor and the second switching transistor comprise bipolar transistors having opposite polarity.


Attorney's Docket No.: 02894-743US1 / 06778

Applicant: Gunther Bergk
Serial No.: Not Yet Assigned
Filed: Herewith
Page: 6 of 9

16. (New) A method of inductively transmitting electric energy, the method
comprising:
providing a circuit arrangement including:
an oscillating circuit;
a push-pull circuit comprising first and second switching transistors configured to
alternate a first current flow through the oscillating circuit;
a control circuit comprising first and second control transistors configured to
control an antiphase switching of the first and second switching transistors; and
a frequency generator;
generating an output signal with the frequency generator; and
delivering the output signal to a control terminal of the first control transistor and a
control terminal of the second control transistor, thereby driving the control circuit and
controlling the direction of the first current flow through the oscillating circuit.
contoining the uncertain of the first current new through the openhating encurre
17. (New) The method according to claim 16, wherein the oscillating circuit
comprises a primary coil of a transformer.
comprises a primary con or a transformer.
18. (New) The method according to claim 17, further comprising magnetically
coupling the primary coil to a secondary coil, and inducing a second current flow through the
secondary coil.
secondary con.
19. (New) The method according to claim 18, further comprising connecting the
secondary coil to a battery, and charging the battery with the second current flow from the
secondary coil.
secondary con.
20. (New) In combination, an electrical appliance and an associated charging station;
· · · · · · · · · · · · · · · · · · ·
wherein
the charging station comprises:
a circuit arrangement configured to inductively transmit electric energy,
including:
an oscillating circuit comprising:

Applicant: Gunther Bergk
Serial No.: Not Yet Assigned

Filed : Herewith Page : 7 of 9

- 21. (New) The combination according to claim 20, wherein the electric appliance further comprises a battery electrically connected to the secondary coil.
- 22. (New) The combination according to claim 20, wherein the electric appliance is an electric toothbrush.
- 23. (New) The combination according to claim 20, wherein the electric appliance is an electric shaver.